from praisonaiagents import Agent, Task, Praison LabsAgents
import time
def get_environment_state():
"""Simulates getting current environment state"""
current_time = int(time.time())
states = ["normal", "critical", "optimal"]
state = states[current_time % 3]
print(f"Environment state: {state}")
return state
def perform_action(state: str):
"""Simulates performing an action based on state"""
actions = {
"normal": "maintain",
"critical": "fix",
"optimal": "enhance"
}
action = actions.get(state, "observe")
print(f"Performing action: {action} for state: {state}")
return action
def get_feedback():
"""Simulates environment feedback"""
current_time = int(time.time())
feedback = "positive" if current_time % 2 == 0 else "negative"
print(f"Feedback received: {feedback}")
return feedback
# Create specialized agents
llm_caller = Agent(
name="Environment Monitor",
role="State analyzer",
goal="Monitor environment and analyze state",
instructions="Check environment state and provide analysis",
tools=[get_environment_state]
)
action_agent = Agent(
name="Action Executor",
role="Action performer",
goal="Execute appropriate actions based on state",
instructions="Determine and perform actions based on environment state",
tools=[perform_action]
)
feedback_agent = Agent(
name="Feedback Processor",
role="Feedback analyzer",
goal="Process environment feedback and adapt strategy",
instructions="Analyze feedback and provide adaptation recommendations",
tools=[get_feedback]
)
# Create tasks for autonomous workflow
monitor_task = Task(
name="monitor_environment",
description="Monitor and analyze environment state",
expected_output="Current environment state analysis",
agent=llm_caller,
is_start=True,
task_type="decision",
next_tasks=["execute_action"],
condition={
"normal": ["execute_action"],
"critical": ["execute_action"],
"optimal": "exit"
}
)
action_task = Task(
name="execute_action",
description="Execute appropriate action based on state",
expected_output="Action execution result",
agent=action_agent,
next_tasks=["process_feedback"]
)
feedback_task = Task(
name="process_feedback",
description="Process feedback and adapt strategy",
expected_output="Strategy adaptation based on feedback",
agent=feedback_agent,
next_tasks=["monitor_environment"], # Create feedback loop
context=[monitor_task, action_task] # Access to previous states and actions
)
# Create workflow manager
workflow = Praison LabsAgents(
agents=[llm_caller, action_agent, feedback_agent],
tasks=[monitor_task, action_task, feedback_task],
process="workflow",
verbose=True
)
def main():
print("\nStarting Autonomous Agent Workflow...")
print("=" * 50)
# Run autonomous workflow
results = workflow.start()
# Print results
print("\nAutonomous Agent Results:")
print("=" * 50)
for task_id, result in results["task_results"].items():
if result:
task_name = result.description
print(f"\nTask: {task_name}")
print(f"Result: {result.raw}")
print("-" * 50)
if __name__ == "__main__":
main()